Webjags >> Main page Recent changes History

Built-in models:Conditional linear growth curve models

Difference between revisions from 2014/11/11 16:47 and 2025/12/07 00:27.

!Model
A growth curve model is a two-level model. For the first level, we have
{{%%
\[
y_{it}=b_{i0}+b_{i1}t+e_{it}
\]
%%}}
where, \(y_{it}\) is the observed data for subject \(i\) at time \(t\), \(b_{i0}\) and \(b_{i1}\) are intercept and slope, respectively, for subject \(i\). Suppose there are two subject level predictors \(x_{1i}\) an \(x_{2i}\). At the second level, we have
{{%%
\[
b_{i0}  =  \beta_{1}+\beta_{2}x_{1i}+\beta_{3}x_{2i}+v_{i0}
\]
\[
b_{i1}  =  \beta_{4}+\beta_{5}x_{1i}+\beta_{6}x_{2i}+v_{i1}
\]
%%}}
We further assume that \(Var(e_{it})=\sigma^2\) and \(\mathbf{b}_i=(b_{i0}, b_{i1})'\) follows a bivariate normal distribution with mean '''0''' and covariance matrix '''D'''.
!Code
{{
model{
# Model specification for linear growth curve model
for (i in 1:N){
b[i,1:2]~dmnorm(mub[i, 1:2], Inv_D[1:2,1:2])
mub[i,1]<-beta[1]+beta[2]*x1[i]+beta[3]*x2[i]
mub[i,2]<-beta[4]+beta[5]*x1[i]+beta[6]*x2[i]
for (t in 1:4){
y[i, t] ~ dnorm(muY[i,t], Inv_Sig_e2)
muY[i,t]<-b[i,1]+b[i,2]*t
}
}

#Priors for model parameter
for (i in 1:6){
beta[i] ~ dnorm(0, 1.0E-6)
}
Inv_D[1:2,1:2]~dwish(R[1:2,1:2], 2)
R[1,1]<-1
R[2,2]<-1
R[2,1]<-R[1,2]
R[1,2]<-0
Inv_Sig_e2 ~ dgamma(.001, .001)
Sig_e2 <- 1/Inv_Sig_e2
D[1:2,1:2]<-inverse(Inv_D[1:2,1:2])
rho_LS <- D[1,2]/sqrt(D[1,1]*D[2,2])
}
}}


Powered by LionWiki. Last changed: 2024/12/10 23:04 Erase cookies History