var
tauC,mu[3],mean[3],prec[3,3],tau[3,3], Y[K,n], phi[K,3],theta[K,3],
sigmaC,sigma[3],x[n], R[3,3], eta[K,n], sigma2[3,3];
model {
for (i in 1:K) {
for (j in 1:n) {
Y[i, j] ~ dnorm(eta[i, j], tauC)
eta[i, j] <- phi[i, 1] / (1 + phi[i, 2] * exp(phi[i, 3] * x[j]))
}
phi[i, 1] <- exp(theta[i, 1])
phi[i, 2] <- exp(theta[i, 2]) - 1
phi[i, 3] <- -exp(theta[i, 3])
theta[i, 1:3] ~ dmnorm(mu, tau)
}
mu[1:3] ~ dmnorm(mean, prec)
tau[1:3,1:3] ~ dwish(R, 3)
sigma2[1:3,1:3] <- inverse(tau)
for (i in 1:3) {
sigma[i] <- sqrt(sigma2[i, i])
}
tauC ~ dgamma(1.0E-3, 1.0E-3)
sigmaC <- 1 / sqrt(tauC)
}