var
x[N],y[N],t[N], # pre-drug, post-drug and total PVC count
state[N],state1[N], # binary indicator of whether patient is cured
theta, # probability of cure (prob of state = 1)
p, beta, # p = binomial probability = beta/(1+beta)
P[2], # `pick' variable used to select appropriate
# value for the binomial probability depending
# on whether state1 = 1 or 2 (not cured or cured)
alpha, delta; # p and theta transformed to logit scale for normality
model {
# MODEL
for (i in 1:N) {
y[i] ~ dbin(P[state1[i]], t[i]);
state[i] ~ dbern(theta);
state1[i] <- state[i]+1; # state[i] takes values 0 or 1, so need to
# add 1 to get values for use as index on P
}
P[1] <- p; P[2] <- 0;
logit(p) <- alpha; alpha ~ dnorm(0,1.0E-4);
beta <- exp(alpha); # beta measures change in rate of PVCs after treatment
logit(theta) <- delta; delta ~ dnorm(0,1.0E-4)
}