var
x[T],mu[N,T],Y[N,T],beta[N,2],mu.beta[2],
Sigma2.beta[2,2],sigma.beta[2],tau.c,sigma,R[2,2],r,alpha0,
tau.beta[2];
model {
for (i in 1:N) {
for (j in 1:T) {
Y[i,j] ~ dnorm(mu[i,j],tau.c);
mu[i,j] <- beta[i,1] + beta[i,2]*x[j];
}
beta[i,1] ~ dnorm(mu.beta[1],tau.beta[1]); # independent Normals
beta[i,2] ~ dnorm(mu.beta[2],tau.beta[2]); # independent Normals
}
# prior for sampling precision
tau.c ~ dgamma(1.0E-3,1.0E-3); sigma <- 1.0/sqrt(tau.c);
# intercept at mean(x[]) for uncentred model
alpha0 <- mu.beta[1] + mu.beta[2]* mean(x[]);
# parameters considered independent
for (k in 1:2){
tau.beta[k] ~ dgamma(1.0E-3,1.0E-3);
sigma.beta[k]<-1/sqrt(tau.beta[k]);
}
mu.beta[1] ~ dnorm(0,.00001); # `flat' univariate Normal prior on mean
mu.beta[2] ~ dnorm(0,.00001); # `flat' univariate Normal prior on mean
}