var r[N], p[N], x[N], n[N], alpha, alpha.star, beta, r.hat[N], llike[N],
llike.sat[N], D;
model {
for (i in 1:N) {
r[i] ~ dbin(p[i], n[i]);
cloglog(p[i]) <- alpha.star + beta*(x[i]-mean(x[]));
# log likelihood for sample i & saturated log-likelihood:
llike[i] <- r[i]*log(p[i]) + (n[i]-r[i])*log(1-p[i]);
llike.sat[i] <- r[i]*log(r[i]/n[i]) + (n[i]-r[i])*log(1-r[i]/n[i]);
r.hat[i] <- p[i]*n[i]; # fitted values
}
alpha.star ~ dnorm(0.0, 1.0E-3);
beta ~ dnorm(0.0, 1.0E-3);
alpha <- alpha.star - beta*mean(x[]);
D <- 2 * (sum(llike.sat[]) - sum(llike[]));
}