/*
Beta-binomial model for litters data.
Approximate uniform shrinkage prior
with uniform prior for mu
We need to truncate the beta distribution of p[i] to avoid a
singularity at 1 when b[i] < 1. This slows down the calculation
considerably as it requires calculation of the incomplete beta
function.
*/
model {
for (i in 1:G)
{
for (j in 1:N)
{
r[i,j] ~ dbin(p[i,j], n[i,j]);
p[i,j] ~ dbeta(a[i], b[i]) T(,0.9999);
}
a[i] <- nbar[i] * mu[i] * phi[i];
b[i] <- nbar[i] * (1 - mu[i]) * phi[i];
mu[i] ~ dunif(0, 1);
phi[i] <- nbar[i] * theta[i] / (1 - theta[i]);
theta[i] ~ dunif(0, 1);
nbar[i] <- mean(n[i,]);
}
}